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Agenda 

§  Challenges at the exascale 
§  Exascale computing is all about hierarchies 
§  Hierarchical models: scale-bridging and coarse 

graining 
§  Model coupling and partitioning: accuracy, 

stability and consistency, solver strategies 
§  Vlasov-Maxwell: an example 
§  Other considerations: parallel in time, adaptivity, 

high-order discretizations 
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Challenges at the exascale 

§  While specific architectures are not yet known, 
exascale computing will bring constraints: 
– Power consumption: will limit data motion and 

memory access 
– Concurrency: will favor compute-intensive, data-

local algorithms 
– Memory: severe bandwidth limitations, better to 

recompute than to read from memory 
– Data locality 
– Resiliency: soft and hard faults will be common 
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Exascale machines will be hierarchical 

§  There will be many levels of parallelism 
§  Each level of parallelism will bring its constraints, 

and will require a targeted optimization strategy 
– Each level of parallelism will be best suited for 

different algorithmic solutions 
§  The hierarchical nature of the architecture will 

benefit immensely from hierarchical algorithmic 
descriptions: multiscale mathematical models 
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Hierarchical algorithms for hierarchical 
machines: scale-bridging and coarse graining 

§  Many applications of interest to DOE are multiscale 
in nature 
– Tyranny of scales: many orders of magnitude 

separation between temporal and spatial scales 
§  Exascale computing can exploit the tyranny of 

scales to their advantage, provided a suitable 
algorithmic solution is available: hierarchical 
algorithms 

§  Scale-bridging models and coarse-graining 
strategies will play a key role at exascale. 

§  Cutting corners for expediency is not acceptable: 
models must respect physics. 
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Scale-bridging algorithms 

§  One can exploit separation of scales to define a 
model hierarchy (e.g., via coarse-graining): model 
partitioning 

§  Model hierarchies based on separation of scales are 
a good match for exascale computing: 
–  Reliable, less intensive levels of description (macroscopic) are 

mostly unconstrained 
–  Most intensive levels of description (microscopic) dominate cost, 

and will require careful orchestration at most compute-intensive 
levels 

§  Model partitioning is not in conflict with tight 
nonlinear coupling (e.g., nonlinear enslavement) 



|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

July 2014  |  UNCLASSIFIED  |  7 

Scale-bridging algorithms (II) 

§  Coarse-graining is a natural way to define a model 
hierarchy: 
– Moment based 
– Homogeneization 
– Renormalization groups 
– Mori-Zwanzig (stochastic PDEs) 

§  Different levels of the hierarchy may require different 
discretization approaches, e.g.: 
– Continuum for coarse-grained descriptions 
– Particle-based for fine-grained ones (data 

parallelism, locality, resiliency, operational 
intensity) 
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Model coupling and partitioning 

§  Strength of coupling among hierarchy levels 
depends on time scale of interest: 
– Resolving fast time scales will produce non-stiff, 

weakly coupled systems 
– Stepping over fast time scales will lead to stiff, 

strongly coupled ones 
§  When integrating a model hierarchy, one must 

consider: 
– Solution strategy (loose vs. tight coupling) 
– Propagation of numerical errors across hierarchy 

(asymptotic well posedness, preservation of 
conservation laws, nonlinear stability) 



|  Los Alamos National Laboratory  | 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

July 2014  |  UNCLASSIFIED  |  9 

Model coupling and partitioning: 
Partitioned algorithms 

§  Partitioning can be geometric, operational, and 
model-based 

§  Partitioning allows modularity, task parallelism, 
and reduced synchronization, and is a key 
element in defining a model hierarchy 

§  Guiding paradigm: “coupled until proven 
uncoupled” 

§  Partitioning enables loose coupling, but is not in 
conflict with tight coupling (e.g., nonlinear 
enslavement) 
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Model coupling and partitioning: 
Nonlinear solution strategies 
§  Key for stiff model hierarchies (i.e., for most scale-

bridging algorithms) 
§  Enable strict preservation of conservation laws that 

depend on coupling across hierarchy levels 
§  To be practical at the exascale, tight coupling 

strategies will have to be: 
1.  Effectively partitioned (e.g., micro, macro) 
2.  Less compute-intensive level drives nonlinear 

residual (most compute-intensive enslaved), to 
minimize nonlinear solver memory footprint 

3.  Effectively preconditioned (e.g., based on less 
compute-intensive level) 
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Model coupling and partitioning: 
Stability and consistency 
§  As critical as ever, if not more! 
§  Beyond linear stability: consider nonlinear stability 

–  Error propagation across levels 
–  Preservation of conservation laws (contrains) 
–  Asymptotic well-posedness at each level (AP) 

§  Consistency: 
–  High-order is preferred 
–  AP property critical (typically low order; needs research) 

§  Preservation of conservation laws provide many benefits: 
–  Local (e.g., soft-faults) vs. global (e.g., nonlinear stab.) 

§  Particle and stochastic systems present most open 
questions 
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Illustrating model coupling and partitioning: 
Vlasov-Maxwell 
§  Model hierarchy (moment coarsening): 

–  Coarse-grained: Maxwell + fluid moments 
–  Fine-grained: Vlasov equation for multiple species 

§  Model partitioning (tight coupling): 
–  Macro fluid system drives nonlinear residual 
–  Micro kinetic description is nonlinearly enslaved (auxiliary 

computation) 
§  Model discretization: 

–  Fluid-field system employs Eulerian representation 
–  Kinetic description employs particles 

§  Hierarchical implementation (co-design): 
–  Fluid system implemented on reliable layers (CPU) 
–  Particle orbit integration performed on accelerators (GPU) 
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Vlasov-Maxwell: Algorithmic benefits 
§  Algorithmic state of the art is explicit 

algorithms, in lock step (memory 
bounded) 
–  Draconian stability constraints, 

both in time step and mesh 
resolution! 

§  Implicit, tightly coupled solve 
implemented via nonlinear 
enslavement, driven by fluid/field 
residual 

§  Orders of magnitude algorithmic 
speedup (103 demonstrated in 1D, 
>106 expected in multi-D) 

§  Careful co-design cycle renders in in 
compute-bounded mode, 30% of 
peak efficiency 
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Fig. 5. CPU speedup of implicit vs. explicit PIC for the electron Weibel instability
case as a function of k�D . Speedups of several orders of magnitude are possible for
colder plasmas.

These results provide evidence that, in addition to the hardware
benefits documented in [59], orbit-averaging has important
accuracy benefits when large field timesteps �t are employed,
limiting the accumulation of numerical error from theparticle orbit
integration, and allowing the overall accuracy of the simulation to
be determined by the least stiff dynamics.

6.1.2. CPU speedup vs. explicit PIC
We have compared the implicit electromagnetic PIC scheme

vs. an explicit one to demonstrate the efficiency advantage of our
approach, as predicted by Eq. (60). For this purpose, we use the
electron Weibel instability. We fix all parameters except for the
electron temperature (but keeping the temperature anisotropy
fixed). By changing the electron temperature, we vary the Debye
length of the simulation, which in explicit PIC requires one to
change the mesh spacing and the explicit timestep for stability.

Results are depicted in Fig. 5, which shows that the speedup
(CPUex/CPUim) is proportional to (k�D)

�2.33, which is close to the
prediction of (k�D)

�2 in Eq. (60). The extra factor of (k�D)
�0.33

is due to a reduction of the number of function evaluations NFE
with the plasma temperature, as the simple fluid preconditioner
proposed in Section 5 is more accurate for ‘‘colder’’ plasmas.

6.2. The ion Weibel instability

Next, we simulate the ion Weibel instability, which is more
challenging because electron dynamics makes the problem very
stiff. We keep the same mass ratio mi/me = 1836, but use ions
as the reference species for normalization. The simulated domain
is of 2⇡

3
p
me/mi in length, with 64 uniformly distributed cells (cor-

responding to a cell width about 30 times larger than the Debye
length), periodic boundary conditions, and 2000 particles per cell
of each species. The electron species is initialized with an isotropic
Maxwell distribution.We consider two electron thermal velocities,
veTx = 0.001 and veTx = 0.025. The ion species is initializedwith an
anisotropic Maxwellian with Tiy,z/Tix = 40,000 and viTx = 0.001.
The timestep is taken to be �t = 0.1!�1

pi , which is about a fac-
tor of 4000 and 160 times larger than the Vlasov–Maxwell-PIC
CFL (' �D/c) for the corresponding electron thermal velocities.
The parameters are chosen to obtain relatively large growth rates
(which occur at large kx and large energy anisotropies, consistent
with those observed in Ref. [60]). Fig. 6 shows the time history
of the magnetic field energy density for the two electron thermal
velocities. Linear theory predicts growth rates of 2.4 ⇥ 10�3 and
2.2 ⇥ 10�3 for veTx = 0.025 and 0.001, respectively, which are in
excellent agreement with simulations.

Fig. 6. Time history of the magnetic field energyWA = P
i(B

2
y,i+1/2 + B2

z,i+1/2)�x/2
for the ionWeibel instability. Excellent agreementwith the theoretical growth rates
for different electron thermal velocities is found.

Fig. 7. Time history of themagnetic field energy of the kinetic Alfvénwave ion–ion
streaming instability simulation, demonstrating excellent agreement with linear
theory.

6.3. The kinetic Alfvén wave ion–ion streaming instability

Finally, we consider the excitation of kinetic Alfvén waves by
ion–ion streaming [61]. The instability is caused by interactions
between the wave and the streaming ions. The simulation pa-
rameters are similar to those used in Ref. [61]. The mass ratio is
mi/me = 1836.Weuse ions as the reference species. The simulated
domain is 4⇡

3 in length, with 64 uniformly distributed cells (with
each cell about 40 times larger than the Debye length) and periodic
boundary conditions, and the average number of particles per cell
of one species is 2000. The external magnetic field B0 = 0.00778
is set to be at a large angle ✓ = 70� with respect to the propaga-
tion direction (x) of the wave. The plasma consists of Maxwellian
electrons with veT = 0.0745 (�e = 0.1), and two singly charged
ion components, i.e., an ambient ion component a and an ion beam
component b, with number densities na = 0.6ne and nb = 0.4ne
(where ne is the electron density). The two ion components have
vaT = 0.0192 and vbT = 0.0745, and a relative streaming speed
with respect to each other of vd = 2.5vA, with vA = p

me/mi/3
the Alfvén speed along the external magnetic field direction. The
timestep is again set to �t = 0.1!�1

pi (about 60 times larger than
the explicit CFL). Fig. 7 shows the simulation result of the mag-
netic energy density, which is again in excellent agreement with
linear theory (the growth rate for this configuration is reported in
Ref. [61] to be � = 0.218!pi/!ci).

Chen et al, CPC, 2014 

Chen et al, JPC, 2012 
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Vlasov-Maxwell: Accuracy and stability 
benefits 

§  Nonlinear tight coupling enables: 
– Absolute stability 
– Exact preservation of 

invariants (charge, energy, 
canonical momenta; a first) 

– Second-order accuracy, with 
error dominated by slow 
components of solution 
(asymptotic preserving) 
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Fig. 2. Time history of the magnetic field energyWA = P
i(B

2
y,i+1/2 + B2

z,i+1/2)�x/2
evolving from an electronWeibel instability. Excellent agreement between explicit
(with 2048 uniform cells, �t = 0.015) and implicit results and with the theoretical
linear growth rate, i.e.,WA = WA0exp(2�!pet), is found.

For the electron Weibel instability, we choose electrons as the
reference species. For the initialization of the particle distribu-
tion, we use a low-discrepancy sampling method, i.e., Hammer-
sley sequence [56,57], to sample the Maxwell’s distribution. We
also introduce a current by shifting the electron velocity by a small
amount:

vp = vp0 + a cos(kxx) (77)

where vp0 is particle velocity sampled from the Maxwellian distri-
bution, a = 2 ⇥ 10�5 is the perturbation level, kx = 2⇡/L is the
perturbed wave number, and L the domain size.

The simulated domain has L = 32, with 64 uniform cells and
periodic boundary conditions. The average number of particles
per cell of each species is 8000. Electrons are initialized with an
anisotropic Maxwell distribution with Tey,z/Tex = 2.56, and the
thermal velocity parallel to the wave vector is veTx ⌘ p

Tex/m =
0.025. Ions are initialized with an isotropic Maxwell distribution
with viTx = 0.025. The timestep is taken to be �t = 1. For com-
parison, the linear growth rate (� = 0.004) is found from the
dispersion relation of electromagnetic waves in a bi-Maxwellian
plasma [58]:

1 � k2x c
2

!2 �
X

↵

!2
p↵

!2

✓
1 + T↵y,z

2T↵x
Z 0(⇠↵)

◆
= 0, (78)

where ↵ = e, i, ⇠↵ = !/kx
p
2T↵x/m↵ , and Z 0(⇠) is the first deriva-

tive of plasma dispersion function. The agreement between the
simulation and theory is shown in Fig. 2. The time history of con-
served quantities (e.g., charge, energy, momentum, and canonical
momenta) of the simulated system is depicted in Fig. 3. We see
that charge conservation is at the computer round-off level. Energy
conservation is controlled by the JFNK nonlinear tolerance level (a
relative tolerance of 10�8 in used in this study), and the canonical
momenta conservation is controlled by the Picard tolerance level
for orbit integration (a relative tolerance of 10�10 is used). As in
earlier studies [39], the particle momentum in the x direction is
not conserved exactly, but the error is relatively small.

6.1.1. Temporal convergence study
We have performed a temporal convergence study on our CN-

based implicit PIC scheme. Numerical experiments are made for a
series of timesteps (�t) and final times, t = 280, 320, 340, and 400.
We compute the numerical error by subtracting the result of these
simulations from a reference solution (obtained by using a small
timestep �t = 0.015625). We then average over these samples.

Results are shown in Fig. 4. We find two second-order scaling
regimes, for �t sufficiently small and �t sufficiently large, with a

Fig. 3. Conserved quantities in the simulation of the electron Weibel insta-
bility. Charge conservation is measured as the (root-mean-square) rms of the
continuity equation, numerically evaluated at grid cellsqP

i(⇢
n+1
i � ⇢n

i + �t(j̄i+1/2 � j̄i�1/2)/�x)2/Ng where Ng is the number of grid-
points. Energy conservation is measured as the change in the total energy (c.f. Eq.
(44)) with respect to the one at t = 0. Momentum conservation in the x direction is
measured as

P
p mpvp,x/

P
p mpvTx , where p indicate particle index respectively. Fi-

nally, themaximumerror in the conservation of canonicalmomenta for all particles
is measured as maxp

�|mpv
n+1
p + qpAn+1

p � mpv
n
p � qpAn

p|
�
in the y and z directions,

respectively.

Fig. 4. Numerical convergence rate of the CN scheme. Two 2nd order scaling
regimes are found corresponding to small and large timesteps. In the intermediate
range, numerical errors are controlled by the orbit-averaging procedure.

flat-error transition in between. This transition is due to the orbit
averaging procedure, and may be understood as follows. With or-
bit averaging, two discrete timesteps,�t and�⌧ , are employed for
field and particle quantities, respectively. When �t is sufficiently
small, �⌧ = �t , and CN delivers a second-order convergence
rate. However, when �t increases, the error estimator and/or the
particle crossing step limits the particle time step �⌧ , which at
that point becomes independent of �t . This explains the flat re-
gion beyond a threshold time step in Fig. 4. For larger �t still, dis-
cretization errors associated with the field equations (which are
also second-order accurate) become important, resulting in the
second second-order-accurate regime.
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flat-error transition in between. This transition is due to the orbit
averaging procedure, and may be understood as follows. With or-
bit averaging, two discrete timesteps,�t and�⌧ , are employed for
field and particle quantities, respectively. When �t is sufficiently
small, �⌧ = �t , and CN delivers a second-order convergence
rate. However, when �t increases, the error estimator and/or the
particle crossing step limits the particle time step �⌧ , which at
that point becomes independent of �t . This explains the flat re-
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Chen et al, CPC, 2014 
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Unleashing the temporal axis:  
parallel-in-time approaches 

§  Sequential aspect of time integration presents a 
bottleneck 

§  Need to “open” temporal dimension to iterative 
treatment 

§  Many flavors have been explored: parareal (2-
level MG), MG-like, SDC-based, etc 
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Role of high-order discretizations and 
adaptivity at the exascale 

§  High-order discretizations promote data locality 
and operational intensity, and are therefore 
better suited for the exascale 

§  Adaptivity will keep playing a fundamental role, 
but with extended “features” 
– Mesh adaptivity 
– Order adaptivity 
– Model adaptivity 
– Coupling adaptivity 
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Conclusions 

§  Exascale computing brings many challenges, but also 
many opportunities for mathematical exploration 

§  Algorithms and discrete representations will need to 
adapt to use these machines 
–  Hierarchical architectures will demand hierarchical 

model descriptions 
–  Scale-bridging applications present a significant 

opportunity 
§  Exascale computing opens many applied mathematics 

research questions related to stability, accuracy, 
asymptotic preservation across levels, and solver 
strategies 


